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Abstract: This research delves into using an artificial neural network (ANN) to forecast blast-induced 

ground vibration, vital for controlling the impact of blasting on nearby residential areas. By leveraging data 

from Singareni mines, the ANN model incorporates various input parameters to predict ground vibration 

intensity (peak particle velocity). With a dataset of 150 entries and sensitivity analysis, the ANN 

demonstrates a robust regression coefficient of 0.92, signifying its predictive strength. Comparative analysis 

favors the ANN model, showcasing its potential in mitigating adverse effects on residential zones, marking a 

significant stride in managing blast-induced ground vibration prediction using ANN. 
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1. Introduction 

The continuous rise in demand for coal and other minerals has led to the expansion of opencast mines, 

resulting in a greater need for vast quantities of explosives for blasting operations. Currently, explosives are 

the primary energy source for breaking and excavating rocks. When an explosive substance detonates in a 

blast hole, it releases a substantial amount of energy in the form of pressure and temperature almost 

instantaneously. Despite significant advancements in explosive technology, optimizing the use of explosive 

energy remains challenging due to the complex properties of different rock types [1, 2, 3, 4, 5]. A major 

portion of the energy generated during blasting is often lost, leading to undesirable effects such as back 

breaks, fly rock, induced ground vibration, and air overpressure, as illustrated in Figure 1. Only a small 

fraction of this energy is effectively utilized for fracturing and moving the rock mass [6]. 

The earth's trembling propagates in a wave-like manner, radiating from the epicenter similar to ripples 

created when a stone is dropped into a body of water. This wave-like motion transmits significant energy 

through surface structures, causing them to vibrate. If the frequency of ground vibrations matches the natural 

frequency of the structures, resonance can occur, potentially amplifying the vibration’s amplitude beyond the 

initial ground vibration’s amplitude [7]. Duhamel's integral has found significant application in blast 

engineering. Research studies [8] have demonstrated its effectiveness in analyzing structural responses to 

blast waves. For example, [9] utilized Duhamel's integral to predict displacements and accelerations in 

structures subjected to explosive events, underscoring its value in assessing potential damage. According to 

Duhamel's integral principle of structural dynamic response under a general load [10] Duhamel's Integral 

Formulation: In the context of blast loading, Duhamel's integral is expressed as follows:  

u (t)= ∫ ℎ
0

𝑡
 (t−τ)⋅g(τ)dτ …………….. Eq        (1) 

where:  

u (t) represents the response of the structure at time  

h(t−τ) is the response function of the structure to a unit impulse at time  

g(τ) is the time history of the applied load. 
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   Fig. 1. Adverse effect caused by blasting operation            Fig. 2. Factors affecting ground vibration 

 

Peak particle velocity (PPV), frequency and air blast are frequently used criteria’s for evaluating 

ground vibrations. Development of this potential vibration in the ground is determined by a large number 

of linked factors such as physical–mechanical properties and technical specifications of rock mass (geology, 

strength, hardness, degree of saturation, etc.), explosive attributions, and blast design parameters [11, 12]. It 

is important to predict the influence of these factors on explosion for productive utilization of blasting 

power in a rock mass to minimize the blast-induced negative effects [13]. Some ground vibration 

parameters like MCD (Maximum charge per delay), the distance between hole, spacing of hole, explosive 

length of charge in hole shown in Figure 2. 

The Maximum Charge per Delay (MCD) and blast monitoring distance are the primary parameters that 

determine induced ground vibration [14]. These characteristics are interdependent, meaning changes to one 

parameter will invariably affect the others. The behavior of ground vibration is also moderately influenced 

by the types of nearby rock [15]. To achieve the optimal blast with minimal vibration, it is essential to 

consider geophysical features during blast design. Geological discontinuities and their properties play a 

crucial role in the propagation of ground vibration [16]. One of the most significant factors is the distance 

between the motion tracking stations and the blast site. As waves dissipate and disperse over greater 

distances, the resulting vibration is reduced [15]. Blast geometry is vital in controlling ground vibration. 

Specific characteristics such as burden, hole spacing, stemming length, sub-drilling, charge length, hole 

diameter, and hole length can be adjusted to keep ground vibration within acceptable levels [17]. The 

properties of explosives also impact the magnitude and frequency of ground vibration. High-velocity 

explosives generate high-intensity ground vibrations, while low-velocity explosives produce lower-intensity 

vibrations [18]. 

 

2. Artificial Neural Network 

Artificial Neural Networks (ANN), a modern branch of cognitive science, have seen substantial growth 

since the 1980s [19]. Today, ANN is regarded as a powerful tool for addressing complex problems. Neural 

networks have the capability to learn from previously observed patterns [20]. Once the algorithm has been 

trained with a sufficient amount of data points, it can predict outcomes for new input datasets by identifying 

and comparing patterns [21]. Due to its interdisciplinary nature, ANN is increasingly popular among 

researchers, planners, designers, and other professionals, making it an effective tool across various 

commercial and research fields. ANN's predictive accuracy is often reported to surpass measured values. 

When compared to other analytical methods, the results obtained through ANN are found to be remarkably 

realistic. 

Saha [22] used a neural network to analyze structural hazards resulting from changes in specific 

parameters. Similarly, Mahil [23] utilized a neural network to estimate fundamental wave speed and rock 

attributes, showcasing the general mechanism of a multilayer network as depicted in Figure 3. These cases 

demonstrate the effectiveness of neural models in tackling problems involving numerous complex variables 

that affect both processes and outcomes, especially when the relationship between them is ambiguous and 

when experimental or historical data are available. In this study, an effort has been made to use ANN to 

estimate the Peak Particle Velocity (PPV) and its related frequency by incorporating appropriate rock 

volume, blast design specifications, and explosive characteristics. 
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Fig. 3 Multilayer neural network architecture [1] 

 

Ground vibration can have significant adverse effects on residential zones, impacting both structures and 

residents' quality of life. Studies have shown that excessive ground vibration can lead to structural damage to 

buildings [24] and infrastructure, including cracks in walls and foundations [25]. Moreover, prolonged 

exposure to high levels of ground vibration can cause discomfort and annoyance to residents, leading to sleep 

disturbances and increased stress levels [26] Additionally, ground vibration from construction activities or 

industrial operations has been linked to decreased property values in affected areas [27]. This decrease in 

property values can have long-term economic implications for homeowners and communities. Furthermore, 

certain sensitive equipment or machinery within residential areas, such as medical devices or precision 

instruments, may be adversely affected by even low levels of ground vibration [28]. 

 

3. Materials and Methods 
 

3.1 About the site 

The investigation was carried out in the KK OC project, Singareni Coal Fields, which belongs to an 

Indian government-owned enterprise situated in the state of Telangana. KK OC project is located in Northern 

part of Somagudem Indarm coal belt near Mandamarri village in Mancherial district and is bounded by 

North Latitude 18°59'44" and 19°03'42" and East Longitudes 79° 26'32" and 79°28'47" and falls in the 

survey of India. No. 56M/8 of the topo map.  Geological map and location is shown in figure 4 and 5. 
 

     
 Fig. 4. Google location of the mine                 Fig. 5. Geological Map of KK opencast mine  

 

The local relief of the mine ranges from 120 meters over the average sea level in the south to 270 meters 

above mean sea altitude in the north, with an average slope of 5.7 meters per kilometer towards the Godavari 

River running in the south. 
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3.2. Data Collection 

The height of the study benches was 17 meters. The alluvium soil and sandstone comprised the friable 

rock strata. The blast hole measured 250 mm in diameter and 18 meters in depth. Site Mixed Emulsion was 

the explosive (SME). The firing pattern was a line that was started with a cast booster and NONEL initiation 

mechanism, while the drilling pattern was square. Sandstone had a density of 2.3 g/cc. Figures 6 and 7 

display, OB bench, blast site, and blast parameters. burden (m), spacing (m), blast hole length (m), blast hole 

diameter (mm), total explosive (kg), charge per hole (kg), stemming length (m), firing pattern, and structural 

elements like joints were among the blast design characteristics that were gathered during the visit. 
 

       
    Fig. 6. OB sandstone bench     Fig. 7. Blast site 

     

In the region, the geological state of the rock mass was isotropic in all directions. To ensure consistency 

in the vibration monitoring measurements, the observation point locations were selected at an identical angle 

to the blast site. Any insignificant impact of the variations in angle has been disregarded. At the experimental 

drilling sites, random benches were used to gather samples related to the qualities of the rock.  

 

3.3. Ground Vibration Measurement 

The ground vibration was recorded using an engineering seismograph called Minimate, as Figure 8 (a & b) 

illustrates. To keep direct contact with the earth, the transducer was securely pressed into the ground while 

fastened to spikes, as shown in figures 8a & 8b. 
 

  
Fig.8 (a & b). Data collection using Minimate blaster 

 

Given that the distance between the blast area and the monitoring station stayed constant during the 

research, the maximum charge per delay was between 110 and 210 kg. 500 meters was the measurement 

distance. The seismograph recorded vector sum velocity (VS) and PPV for the longitudinal (R), vertical (V), 

and transverse (T) components during the blasts. 

 

3.4. Principle Component Analysis (PCA) 

Principal component analysis was used in XLSTAT for this inquiry to understand how independent and 

dependent variables affected trends for the ultimate choice of blast design in software that would be used for 

experimental blasts. The hole width, burden, spacing, front row burden, decking, stemming, firing pattern, 

total average explosive quantity, and total explosive quantity were selected to load PCA (Principle 

Component Analysis) as the input data for loading from the blast design parameters. 

The correlation circle that the PCA in software package generates serves as the starting point for 

interpretation; the values within the circle will direct the process moving forward. When examining the link 
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between independent and dependent variables, the software package correlation circle is an invaluable tool. 

Three segments comprise the interpretation: the positively correlated, negatively correlated, and orthogonally 

correlated segments. 
 

 
Fig. 9. Correlation Circle Diagram of blast design parameters 

 

Positively correlated variables are those that are found close together and in the same quadrant; 

negatively correlated variables are those that are found in the opposite quadrant, and orthogonally related 

variables are those that are found next to the quadrant. Positive correlation denotes a proportionate link, 

negative correlation denotes an inversely proportional relationship, and orthogonal correlation denotes no 

relationship at all between the variables [29]. The relationship between the number of holes, the load, the 

spacing, the front row burden, the stemming, the firing pattern, the hole depth, and the explosive quantity 

(independent variables) has been determined using XLSTAT [30]. From Figure 9, It is observed that Peak 

Particle Velocity (PPV) has a positive relationship with stemming length, burden, and spacing, while there is 

a negative relationship between explosive quantity per hole, total explosive, and firing pattern. Therefore, 

PPV tends to increase with higher values of the other independent parameters. 

 

4. Machine Learning Models 

 

4.1. ANN Approach to predict PPV 

Artificial Neural Networks (ANNs) are computational models inspired by the human brain's neural 

structure [31]. The ANN predicts pattern outcomes based on prior learning. Once trained, it detects 

similarities in new patterns, adjusting results accordingly, offering interpolation capabilities. Training the 

ANN involves the backpropagation algorithm. The feed-forward Backpropagation Neural Network (BPNN) 

consists of an input layer, hidden layer, and output layer. Neurons within these layers connect using weighted 

connections. Neurons in the input layer pass information to those in the hidden layer, and similarly, 

connections occur between the hidden and output layers [32, 33, 34]. The problem determines the number of 

hidden layers and their neurons. In this study, a BPNN with a 'log-sigmoid' transfer function was employed, 

the mathematical equation for the sigmoid function is 1/(1+e(-x) as presented in figure 10. Where x 

represents the input value and e denotes the constant 2.718.  
  

   
Fig. 10. Activation function and sigmoid equation for prediction in ANN in MATLAB 
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After experimenting with various combinations, the optimal model comprised two hidden layers, each 

with ten neurons. Table 1 displays the input and output parameters utilized in the ANN model. Training 

involved 150 datasets, while 30 datasets were reserved for testing and validation. Figure 11 depict the neural 

network's architecture and performance during training. The regression plots in Fig. 12 showcase the selected 

network's proficiency across training, testing, and validation stages. 

The connections between the results and hidden components follow a similar logic [35]. Every pattern 

pair of training exemplars given to train the network goes through this process again. Each iteration of every 

training pattern is referred to as a cycle or period. the user-specified goal is effectively reached once the 

inaccuracy within it is shown, the procedure is repeated as many times as necessary [36, 37].  
 

 
Fig. 11. Neural Network Architecture with 1000 iterations for Mean Squared Error (MSE) calculation 

 

 
Fig.12. Neural Network Regression fitting Plot indicting R2 

 

4.2. Multivariate Regression Analysis (MVRA) 

Regressions analysis using more than two parameters is used to gain a better understanding of the 

correlation between independent variables and standard modified value. A straight-line formula is the 

parameter in linear regression. To find the best-fitting solution when there are multiple independent variables 

and MVRA is used [38]. By utilizing least squares fit, multiple regressions provide answers to the datasets. 

By creating the regression matrix and using the backslash operator to solve for the coefficient, it builds and 

solves the simultaneous equations [39]. The same datasets and input factors that were used for ANN 

predictions were also used for MVRA [40, 41]. It validates all the input parameters to read and validate the 

input data and found output data is compared with previously obtained data values. The multivariate 

equation insisted in this research work is given below equation (2). 

y = β0 + β1x1 + · · · + βpXp         (2) 
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The equation expresses a linear relationship between the dependent variable (y) and multiple predictor 

variables (x1, x2, ..., xp) weighted by their respective regression coefficients (β1, β2, ..., βp), along with the 

intercept (β0). 

Table 1: Input Parameters for Network and Range 

S. No. Input Parameter Range 

1 Spacing Burden Ratio 1.1 - 1.3 

2 Stemming Length, m 4 - 5 

3 Firing Pattern L, V, D 

4 Explosive Quantity, Kg 500 - 600 

5 Total Quantity of Explosive, Kg   30,000 - 33,000 

6 Distance of monitoring point from blasting face(m) 500 - 1000 

7 Maximum charge per delay(m) 40 - 120 

 

5. Results and Discussions 

This section presents and discusses the findings from the study on neural network modeling technique 

for forecasting blast-induced ground vibration using MATLAB. The study initially assessed the neural 

network model's effectiveness by comparing its predictions to real ground vibration data obtained at several 

blasting sites from Singareni Coal Field. In addition, the study conduct sensitivity analysis to identify 

important input factors that have a major impact on prediction accuracy. These evaluations provide light on 

the durability and reliability of the constructed neural network model for forecasting ground vibration levels 

in response to various blasting situations.  

In this work, RMSE & R2 calculations were performed using the following equations (3) & (4):                   

RMSE =    
1

n
∑ (Yi

n

i=1
− Yi)2                 (3) 

Here, n is the total number of data points, yi denotes the actual values, and Yi denotes the expected 

values. Consequently, the mean squared error (MSE) between the expected and actual values.      

R2  = 1 - 
∑ i(yi − ̂ yi)2

∑ i(yi − ̄ y)2
                       (4) 

The data is denoted as n, yi &  ̂ yi, where  ̂ yi stands for the mean and represents and projected values, 

respectively. Metrics like RMSE and R2 were calculated on the training and testing data sets to identify the 

optimal algorithm for developing a formula to predict fragmentation and ground vibration.  

The ANN model is more accurate than the MVRA model since the root mean square error (RMSE)for 

the different parameters in the ANN model is relatively smaller compared to those of the MVRA model for 

the same parameters. In addition, the coefficient of determination (R2) for the parameters in the ANN model 

for prediction and estimating obtained trained data, The ANN model is closer to unity compared to those of 

the MVRA. Hence, the ANN model predicts outputs with suitable accuracy compared to the MVRA model. 

Computed prediction by the ANN model as seen in Table 5 is the best with R2 of 0.92. MVRA model also 

predicted better than other predicted equations. Various predictive equations are compared with obtained 

mine data to show the accuracy of PPV during blasting is shown in figure 13 and in table 2. 
 

 
Fig. 13. Performance R2 values for various models 
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Similarly, it observed among ANN and MVRA, ANN produced finest RMSE value of 0.5, which 

generated a low value when compared to MVRA as shown in figure 14. 
 

 
Fig. 14. ANN RMSE output values for PPV 

 

Table 2. PPV Recorded and Predicted Values 

S. No Recorded 

PPV,mm/s 

ANN Predicted 

PPV, mm/s 

Error ANN MVRA Predicted 

PPV, mm/s 

Error 

MVRA 
1 0.23 0.2321 -0.01 0.24 -0.01 

2 0.98 0.90 0.03 0.48 0.49 

3 0.28 0.28 -0.03 0.40 -0.12 

4 0.31 0.30 0.01 0.52 -0.21 

5 0.58 0.57 0.06 0.42 0.16 

6 0.98 0.97 0.03 0.51 0.46 

7 0.58 0.57 0.06 0.47 0.15 
 

Table 2 shows a comparison between measured and predicted PPV by PPV, MVRA, and different 

predictor equations considering parameters influencing them and it shows ANN model predict PPV is very 

close to measured data than other various predicted equation, and geological constants of other than ANN & 

MVRA, equations are presented in table 3. 

The numerical model’s correctness and effectiveness are established through rigorous internal validation 

processes, sensitivity analyses, and comparisons with empirical models and field data, all detailed within the 

main manuscript. These comprehensive analyses demonstrate the reliability of our neural network-based 

approach in predicting blast-induced ground vibration accurately.  

 

Table 3. PPV predicted equations and their site constants for KK OCP mine [4] 

Emperical names Equation 
Siteconstants Prediction output 

value K B 

USBM V=K[R/Qmax]-B 4.95 -0.57 0.81 

Langefors V=K[Qmax/ R2/3)1/2)B 1.84 -0.296 0.78 

Ambraseys- Hendron V= K[ R/Qmax)1/3)-B 0.446 0.697 0.30 

Bureau of indian standard V=K(Qmax/R2/3)B 0.654 0.233 0.71 

 

6. Conclusion 

The study aimed to enhance fragmentation, minimize blast damage (Peak Particle Velocity), and ensure 

the safety of residents near blasting activities. An effective ANN model was developed and applied on-site. 

Comparative analysis between ANN predictions, empirical methods, and MVRA predictors was conducted. 

Using the ANN model, a series of blasts were optimized and compared against a set of un-optimized blasts.  

 The study conducted principal component sensitivity analysis on various parameters and successfully 

identified pivotal factors influencing blast outcomes. Stemming length, firing pattern, total explosive 

quantity, and spacing burden ratio were found to exert considerable influence on peak particle velocity 

among other parameters. 
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 The R2 values among all models like MVRA, USBM, Langefors, Ambraseys- Hendron, and Bureau of 

Indian standard, ANN produced a superior coefficient of regression value of 0.92, which resembles a 

stronger prediction model than others. 

 ANN performs better in training, testing, validation, and in overall category with the values of 0.98, 

0.95, 0.8 and 0.945 respectively, then MVRA in predicting peak particle velocity. 

 Likewise, in terms RMSE, ANN produced a finest lower value of 0.5 than MVRA. 

 The ANN with the set of real blast datasets like spacing burden ratio, stemming length, firing pattern, 

maximum charge per delay, explosive quantity, and distance from the blasting site are quite useful in 

predicting PPV for practicing mining engineers at the field. 

To summarize, the current study presents an optimal performance ANN model for forecasting ground 

vibration during blasting. This work will assist mining engineers and designers in estimating ground 

vibration during blasting. It is also proposed that the ANN model be utilized to address various geotechnical 

challenges.  

 

7. Future Scope of Work 

 To collect data from various mines, include various geo-blast design parameters as inputs for the 

algorithm.  

 To Develop a hybrid algorithm for PPV prediction.  

 To Create a web-based interface for PPV prediction, enabling practicing engineers to benefit with just a 

few clicks. 
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